Skip to content

Open In Colab

Download Quandl Data

Install Quandl

!pip install quandl -q
import pandas as pd
import quandl
import matplotlib.pyplot as plt
%matplotlib inline

Get Data and Save in Pandas DataFrame

If run into rate limits, register at Quandl and provide api_key in the get call.

import getpass

KEY = getpass.getpass()
df = quandl.get(
    "FRED/DEXCHUS", 
    start_date='2014-01-01', 
    end_date='2020-10-01',
    api_key=KEY
).rename(columns={'Value':'DEXCHUS'})
df.index.name = 'ds'
df
DEXCHUS
ds
2014-01-02 6.0504
2014-01-03 6.0505
2014-01-06 6.0524
2014-01-07 6.0507
2014-01-08 6.0510
... ...
2020-09-25 6.8220
2020-09-28 6.8106
2020-09-29 6.8150
2020-09-30 6.7896
2020-10-01 6.7898

1690 rows × 1 columns

Plot Time Series Data

df.plot(figsize=(16, 10));
No description has been provided for this image

Find Missing Data

pd.date_range(
    start = df.index.min(), 
    end = df.index.max()
).difference(df.index)
DatetimeIndex(['2014-01-04', '2014-01-05', '2014-01-11', '2014-01-12',
               '2014-01-18', '2014-01-19', '2014-01-20', '2014-01-25',
               '2014-01-26', '2014-02-01',
               ...
               '2020-08-30', '2020-09-05', '2020-09-06', '2020-09-07',
               '2020-09-12', '2020-09-13', '2020-09-19', '2020-09-20',
               '2020-09-26', '2020-09-27'],
              dtype='datetime64[ns]', length=775, freq=None)

Fill Missing Data with ffill()

df_ffill = df.reindex(pd.date_range(start=df.index[0], end=df.index[-1])).ffill()

# Check missing values filled '2014-01-04', '2014-01-05'
display(df_ffill.loc['2014-01-02':'2014-01-06', :])
df_ffill.loc['2014-01-02':'2014-01-06', :].plot(figsize=(16, 10));
DEXCHUS
2014-01-02 6.0504
2014-01-03 6.0505
2014-01-04 6.0505
2014-01-05 6.0505
2014-01-06 6.0524
No description has been provided for this image

Fill Missing Data with bfill()

df_bfill = df.reindex(pd.date_range(start=df.index[0], end=df.index[-1])).bfill()

# Check missing values filled '2014-01-04', '2014-01-05'
display(df_bfill.loc['2014-01-02':'2014-01-06', :])
df_bfill.loc['2014-01-02':'2014-01-06', :].plot(figsize=(16, 10));
DEXCHUS
2014-01-02 6.0504
2014-01-03 6.0505
2014-01-04 6.0524
2014-01-05 6.0524
2014-01-06 6.0524
No description has been provided for this image

Fill Missing Data with Interpolation

Pandas Documentation

df_interpolate = df.resample('D').interpolate(method='time')

# Check missing values filled '2014-01-04', '2014-01-05'
display(df_interpolate.loc['2014-01-02':'2014-01-06', :])
df_interpolate.loc['2014-01-02':'2014-01-06', :].plot(figsize=(16, 10));
DEXCHUS
ds
2014-01-02 6.050400
2014-01-03 6.050500
2014-01-04 6.051133
2014-01-05 6.051767
2014-01-06 6.052400
No description has been provided for this image